
典型的广度优先搜索算法,根据字典序大小,可以确定遍历的循序, 因为字典序D<L<R<U, 所以对于每一个节点优先先往下走,然后向左走,然后向右走,然后向上走。则最后首先到达出口的一条路径就是符合题意的最短路径。遍历过程中需要一个数组记录遍历的过程,即经过一个节点时,需要记录下是从哪一个节点(或者是以什么方式)到达此节点的。然后利用这个过程关系,可以推出整个过程路径。
package club.test;
public class D {
static int[][] panel={
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
{1,0,1,0,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,1,0,1,0,1},
{1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1},
{1,0,1,1,1,1,0,1,1,0,1,0,0,1,0,0,0,1,0,0,0,0,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,1},
{1,0,1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,1,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,0,0,1,0,1,1,1},
{1,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,0,0,0,0,0,0,1},
{1,1,1,0,0,1,0,0,0,1,1,0,1,0,1,0,0,0,0,1,0,1,0,1,1,0,0,0,1,1,0,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,0,1,1,1,1},
{1,0,0,0,1,1,0,1,1,0,1,0,1,0,1,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,1,1,0,0,0,0,0,0,0,1},
{1,1,0,1,0,0,0,0,0,1,0,1,0,0,0,1,0,0,1,1,0,1,0,1,0,1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1,1,1,0,1,0,1},
{1,0,0,1,1,1,0,0,0,0,0,1,0,1,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,1,1,0,0,0,0,1,0,0,1,1},
{1,1,1,0,0,0,1,1,0,1,0,0,0,0,1,1,1,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,0,0,1,1,0,1,0,0,0,1},
{1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,1,0,0,1,0,1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0,0,0,1,0,1,1},
{1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0,0,0,1,0,1,0,0,1},
{1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,1,0,1,0,1,0,0,0,1,1,1},
{1,1,0,1,0,1,0,1,0,0,1,1,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,1,1,0,0,1,1,1,1,0,1,1,0,1,0,0,0,0,1,0,0,0,1},
{1,1,0,1,0,1,0,1,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,1},
{1,1,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,0,1,0,1,1,0,0,1,0,1,1,0,1,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,1},
{1,1,0,1,0,1,0,0,1,0,0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,0,1,0,1,0,0,1,1},
{1,0,0,1,0,1,0,0,1,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,0,0,0,1,1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0,1,1,0,1,0,1,1},
{1,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,1,0,1},
{1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,1},
{1,1,0,1,0,0,1,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,1,1,0,1,1,0,0,1,0,1,1,0,1,0,1,1,0,1,0,1,0,1,0,0,0,0,1,1},
{1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,1},
{1,1,0,1,0,0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,1,0,0,1,0,1},
{1,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1},
{1,1,1,0,1,0,0,0,0,0,0,1,0,0,1,1,1,0,1,1,1,0,0,1,0,0,1,0,0,0,0,1,1,1,0,1,0,0,1,0,1,1,0,1,1,1,0,1,0,0,0,1},
{1,0,0,0,0,0,1,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,0,1,1,0,0,1,1,1},
{1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1},
{1,1,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,0,1,0,0,0,1,0,1,1,1,0,1,0,0,0,1},
{1,0,0,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,1,1},
{1,1,0,0,0,0,0,0,1,1,0,0,1,1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,0,0,1,1,0,1,1,1,0,1,0,1,0,1,1,0,1,1,1,1,0,0,0,1},
{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}};
}
package club.test;
import java.util.LinkedList;
/**
* 迷宫问题
* @author jiajia
*/
public class TestMain10 {
/**
* 记录节点位置
*/
public static class Location{
public int x;
public int y;
public Location(int x,int y){
this.x=x;
this.y=y;
}
}
/**
* 字典序D<L<R<U
* 所以对于每一个节点优先先往下走,然后向左走,然后向右走,然后向上走
*对应的方位增量为move[][]数组
*/
static int move[][] = { {1,0}, {0,-1}, {0,1}, {-1,0} };
/**
* 路径数组
*/
static int panel[][]=D.panel;
/**
* 所经过的路径标记
*数组中多定义了两行两列
*首行,尾行,和首列尾列都是1,代表不可达。
*/
static int role[][]=new int[32][52];
/**
* 方向
*/
static char[] c=new char[]{'D','L','R','U'};
/**
* 队列,储存待遍历节点
*/
static LinkedList<Location> qu=new LinkedList<Location>();
/**
* 主函数
*/
public static void main(String[] args) {
long l=System.currentTimeMillis();
bfs();
long l2=System.currentTimeMillis();
System.out.println();
System.out.println(l2-l);
}
/**
* 寻路
*/
public static void bfs() {
/**
* 添加第一个元素
*/
panel[1][1] =1;
qu.offer(new Location(1,1));
/**
* 广度优先搜索的过程
*如果队列不为空,则一直循环
*/
while(!qu.isEmpty()) {
/**
* 从队列中
*/
Location l=qu.poll();
/**
* 已经到达出口
*/
if(l.x==30&&l.y==50)
break;
/**
* 按照D<L<R<U遍历该节点的四个方向
*/
for (int i = 0; i < 4; ++i) {
/**
* nx,ny是待遍历节点的坐标
*/
int nx=l.x+move[i][0],ny=l.y+move[i][1];
/**
* 判断该节点有没有走过
*如果是0则没有走过,可以进行前进,将其状态置为1,代表已经走过
*然后将该节点入队
*/
if (panel[nx][ny] == 0) {
panel[nx][ny] = 1;
qu.offer(new Location(nx, ny));
/**
* 记录经过该节点时的状态,即从那个方位过来的
*/
role[nx][ny] = i;
}
}
}
dfs(30,50);
}
/**
* 深度优先搜索
* 打印路径
*/
public static void dfs(int x,int y) {
/**
* 因为在寻路的过程中把经过每一个节点的状态给记录在role数组中,
* 所以根据每个节点的状态可以推导出之前的状态。
*/
if (x != 1 || y != 1) {
int t = role[x][y];
/**
* t代表是通过第t种方位增量到达x,y节点的,
* 所以可以通过这种增量状态,和x,y节点推导出之前的系节点位置
*/
dfs(x - move[t][0], y - move[t][1]);
System.out.print(c[t]);
}
}
}